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ABSTRACT

This study investigates the effects of different charge density rise times upon the
magmtude of the Cerenkov radiation produced by a semi-infinite electron beam. The
magnetic field pulses were generated for different rise times and relationships between
the maximum magnitudes and their associated rise times were obtained. These were
compared with theoretical relationships derived from a power series approximation. The
generated results were close to those predicted by theory for short rise times at short
radiai distances, For longer rise times, the departure from theory was caused by the
magnitude of the decay portion of the magnetic pulse. This vffect could be mitigated at
longer rise tinies by increasing the radial distance from the electron beam.
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I. INTRODUCTION

A. BACKGROUND

Cerenkov radiation is the electromagnetic emission caused by the passage through

a dielectric medium of a charged particle that is traveling faster than the speed of light

in that dielectric medium.

Imagine an electron moving through a dielectric medium relatively slowly. The

electric field of the moving electron tends to repulse the electrons of nearby atoms while

attracting the nuclei, creating distortions in the atoms which results in the creation of

temporary dipoles. Thus, the medium around the electron becomes polarized. Because

the polarization field around the electron is completely symmetric, there is no resultant

field at large distances. [Ref. 1: pp. 3-4]

But if the electron is moving faster than the speed of light in the dielectric medium,

the polarization field is no longer completely symmetrical. While the azimuthal plane

symmetry is preserved, there is a resultant dipole field along the axis of travel which is

apparent at large distances. This field is created at each path element along the electron's

track. Each field radiates a brief electromagnetic pulse before the atoms realign them-

selves and return to their normal shape. [Ref. 1: p. 4] This behavior can be seen in Fig-

ure 1.

The time development of Cerenkov radiation was introduced by Buskirk and

Neighbours for application to electron beams. Single charged particles produce a radi-

ated power that is proportional to the frequency. Electrons in an accelerator bunch ra-

diate coherently, an effect that more than offsets a single particle increase in radiated
power with frequency. [Ref. 2: p. 3750]

This time structure effect is not observable with present technology in S or L band

linear accelerators due to their relatively high fundamental frequency. Induction accel-

erators should produce observable results in air for energies greater than 25 MeV due

to their longer electron bunch structure. [Ref. 2: p. 3753]

Lyman conducted a prelimina-y study investigating the magnetic field radiated from

a passing charge bunch traveling over a finite path. She showed that the magnetic field

magnitude versus time plots depended not only on the observer's position but on the

specific time conditions of each case. [Ref 3: p. 3]
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Figure 1. A Charged Particle Moving Through a Dielectric Medium: (a) slow

speed (b) fast speed [Rcf. 1: p. 4]

Price expanded on Lyman's study by investigating how the magnitude and shape of

the radiated field depended on the obscrver location relative to the time boundaries de-

fined by relationships between the arrival times of different parts of a pulse. [Ref. 4: p.

31

B. OBJECTIVES

One of the key assumptions in the Cercnkov radiation time development is that the

current pulse has a ramp-front, i.e. that the electron pulse density incrCases from zero

to a maximum constant value in a linear fhshion. The end of the pulse is assumed to be

a mirror image of the ramp-front but the effects of the pulse end havw not been consid-

ered in these studies.

The primary objective of this work is to investigate the effects of varying the rise

time of the electron density, i.e. varying the slope of the ramp-front, upon the magnitude

of the Cerenkov pulse.

Secondary considerations are to comnpaie the shape and magnitude or Cerenkov

pulses along lines parallel to the axis of elcctron beam travel, evaluate the maximum

2



Cerenkov magnitude as a function of radial distance from the axis of electron beam

travel, and plot the magnetic field as a function of time and radial distance.



II. THEORY

A. RADIATION FIELDS
To calculate the Cerenkov magnetic and electric fields, one must first determine the

potentials from the moving charge distribution. The relationship between the fields and

potentials are given by Equations 2.1 and 2.2 [Ref. 2: p. 3750], which are

Bf=fVxA, (2.1)

18A I t (2.2)

The speed of light in free space is c. while the speed of light in the medium is c. The

electron pulse is assumed to move with velocity v in the positive z direction. The charge

density p is assumed to be concentrated along the z axis wbile the charge is assumedi to

move with no change in shape [Ref. 2. p.3750] such that

pj(r,t) = p(z,t)6(x)f(y), (2.3)

p(z,t) = po(z - vt). (2.4)

The charge density p. has units of charge per volume while p and p. have units of

charge per lenght.
Using the assumption of Equation 2.3 and applying it to thc usual retarded solutions

of the wave equations, one obtains the potentials [Ref. 2: p. 3750]

(D(r,t)jI f' lp(r',t')dz',  (2.5)

A(r,t) =7- p(r',t')dz'. (2.6)

Note that c is the permittivity of the medium. Also, t' is the retarded time and

R = r - r' such that

4



t-t I ' (2.7)C

The assumption of Equation 2.4 can now be inserted into the potential and a new

variable u(z') = z' - v' can be introduced [Ref. 2: p. 3750] so that

(D(r,t) = f- po(u)dz', (2.8)

A(r,t) = oudz.(2.9)

The new variable u(z') can be written out explicitly where x, y, and z represent the

coordinates of an observer or observation point and z' is the coordinate of the front edge

of the electron pulse such that

v(x2 +y 2 + (z -
u(z') = z' - Vt + c (2.10)

The velocity v is in the positive z direction and A is proportional to v. Therfore since

A has a component only in the z direction, B only has components in the x and y di-

rections and can be calculated from Equation 2.1 [Ref, 2: p. 3751] such that

x j [f ]dz' + f" 1 [po(u)]dz' '  (2.11)

v fdz'--Lo -- -- [,(u)]dz'. (2.12)By = C0o JCXL R Co % R c

The first integrals in Equations 2.11 and 2.12 have a falloff of R-2 at large distances

for radiation and will be ignored. Implementing the u dependence on x and y (Equation

2.10 where au/8y =y/R and Ou!8x = x/R) into these equations gives Equations 2.13 and

2.14 [Ref 2: p, 37511 in the form

5



Bx V2  y ,,,

B-- f TY2 p '(u)dz', (2.13)

BV- .A-' P '(u)d z'" (2.14)

Note that the new term po'(u) in Equations 2.13 and 2.14 is the derivative of p.(u)

with respect to the function u, which was defined earlier. Equations 2.14 and 2.15 can

be combined into one equation. Also a new function s can be defined as s = (x +2)

[Ref. 2: p. 3751] such that

B = 1 S o'(u)dz'. (2.15)

B. TIME DEVELOPMENT
To evaluate Equation 2.15, one must consider the dependence of u upon z' as given

in Equation 2.10. If Equation 2.10 is plotted in the u-z' plane, the first two terms are a

straight line with unit slope and an intercept that changes with time. The third term is

a hyperbola which opens in the + u direction with asymptotic slopes of ± v/c. In the

Cerenkov case where v > c, the curve is as shown in Figure 2. The curve translates

downward to smaller values of u as time increases. This is due to the time term in

Equation 2.10. [Ref. 2: p. 37511
Certain assumptions about the charge shape and configuration must now be taken

into account. The charge is assumed to move with no change in shape. This was reflected

in Equation 2.4: p(z,t) = p°(z - vt). Since p and p. are also functions of u, p(u) = po(u).

The charge density is assumed to have a ramp-front profile, i.e. the density increases

from zero to a maximum constant value in a linear fashion. The time that it takes for

the charge density to reach this constant plateau is called the rise time [Ref. 4: p. 13].

Only changing currents (those with a nonzero p,) will contribute to the magnetic

fields of Equation 2.15. If the charge density has a linear rise to a constant value, then

the derivative p°'(u) will be a constant valued square pulse of magnitude p,,' as shown in

Figure 3. [Ref. 2: p. 3751]

6
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Figure 2. The Function u(z')

At large negative times, the u(z') curve t, (Equation 2.10) is completely above the

nonzero portion of the p,'(u) curve so that the contribution from p,'(u) is zero and thus

the magnetic field is zero. The u(z') curve moves downward as time increases until the

B pulse begins when u(z') is tangent (curve it ) to the upper portion of the of the po'(u)

pulse. The magnitude of the magnetic field increases as u(z') moves downward with in-

creasing time until the u(z') curve becomes tangent (curve t2) with the lower edge of the

po'(u) pulse. The nonzero part of Equation 2.15 has its largest extent at this time--from

u(z2) to u(z3). At later times, Equation 2.15 breaks into two regions of the z' axis and the

B pulse decreases with increasing time because the extent of the integral in the two re-

gions decreases as a result of the upward turn of the u(z') curve. [Ref 2: p. 3751]

If the derivative p'(u) = p,= = constant, then it can be taken outside the integral of

Equation 2.15. Also the values of n = C/c and fl = v/c° can be inserted so that

B = nfl2pmJ'  S 2 dz'. (2.16)

7
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Figure 3. The Functions po(u) and p°'(u) over the Pulse Lenght

The relationship of the charge density p to the function u (Figure 4) must be detcr-

mined in order to evaluate po'. This relationship is

P pO . (2.17)

Note that Au = u, - u2 (see Figure 1).

Taking the derivative of Equation 2.17 with respect to u, one obtains p,,' such that

Po'(u) =P' = PO (2.18)

Equation 2.18 is now substituted into Equation 2.16 to give

B=-,,2 PO 7 dz. (2.19)
Au f R
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Figure 4. p as a Function of u at One End of the Pulse

Since R2 = s' + (z- z')2 and Au = va where a is the rise time, Equation 2.19 can be

integrated over the limits of z, to z, Introducing the function w = z - z' and integrating

gives the result

Bp= -nfl 1 PO V12B -- tan-' -- )-tan-' )j. (2.20)

Note that wt, z - z,' and w2 = z - z,,. Thus, the problem is to find the values of w, and

w , [Ref. 3: p. 14]

C. LIMITS OF INTEGRATION

To find the limits of integration z,' and z,', one must consider two cases. The first

case is where the u(z') curve minimum is in the non-zero portion of the po'(U) function,

i.e. between curves t, and t2 of Figure 2. '1 he second case is where the u(z') curve mini-

mum has passed through the non-zero portion of the p,'(u) function, i.e. lower than the

curve t2 of Figure 2.

9



The first case produces a single integral where the limits of integration are found by

solving Equation 2.10 for z'. The function u(z') = u, where u, is the value of the u curve

minimum at the upper edge of the po'(u) function. The result is

fl'2 ) + 1f12((Z - A1)2 + S2(l _ (2.21z l ' -( -t ( 2 .2 1 )

Note that A, = u, + yt.

The second case produces two integrals where the limits of integration are also

found by solving Equation 2.10 for z'. Two of the limits come from Equation 2.21 while

the other two come from where the function u(z') = u. U2 is the value of the u curve

minimum at the lower edge of the po'(u) function. The result is Equation 2.21 and

{A -P'z}+_P'(( ,22 2( ,2 )
Z 12 _ #,2Z) (Z -,A2) +S 2  (2.22)

Note that A2 = u2 + vy.

Another way t3 describe the limits is that they are the z' values of the intercepts of

the u(z') curve with the upper and lower edges of the non-zero part of the po'(u) function.

This is shown in Figure 5.

For the two integrals of the second case, the ordering of the limits is very important.

The lower and upper limits of the first integral are z,'( min) and z2'( min) respectively

while the lower and upper limits of the second integral are z,'( max) and z,'( max) re-

spectivcly.

D. RISE TIME DEPENDENCE

To derive an approximation for the maximum magnetic field dependence upon rise

time, Equation 2.10 must be developed in a power series. Denoting zo' as the value of

z' at which Equation 2.10 has zero slope, the values of zo', u(z,') , and the second deriv-

ative of u with respect to z' [Ref. 2: p. 3751] are

2
Z 0 Z - S{2 1 (2.23)

u(zo') = z - vt + S - 1 2 (2.24)

10
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Figure 5. Tihe z' Limits of Integration

a2l I C
2  2  2

- _ I 2D. (2.25
a 2 2(V2 2 -

D is a constant defined for conveincnce of use Thus u can now be expressed as a Taylor

series about the minimum such that

u = u(zo') + D(z' - z,')2. (2.26)

The limits z,' and z' can be written in terms of the minimum value as z,' = z,' + Az'

and z' = z.' - Az' where Az' is the value of z' - z'. The diflIrence u(z') - u(z,') = a where

a is the rise time (or width) of the current derivative pulse p°' (a can be thought of as a

distance by multiplying it by v). [Ref. 2: p. 3751] Therefore

Az'-D- J , (2.27)

Using this value, the fact that Au = va, and the assumption that s and R are slowly

varying, Equation 2.19 can be evaluated to give

11



BM - 0fl 2 P- 2  L 2. (2.28)V 2 aDR 1

Thus the maximum magnetic field has a dependence upon rise time to the negative

one-half power. Therefore, as the rise time increases, the maximum magnetic field de-

creases, [Ref. 2: p. 3752]
Two points should be emphasized. Equation 2.20 gives the exact maximum magnetic

field amplitude for w evaluated at time t2 (see Figure 1). Equation 2.28 gives an approx-
imation for the maximum magnetic field amplitude as a function of the rise time, giving
an opportunity to compare and contrast actual behavior.

12



III. CALCULATIONS AND ANALYSIS

The previous work had identified the exact solution for the maximum magnetic field

amplitude and an approximation for the maximum as a function of the rise time. Until

this time, no comparison had been conducted between the two to validate the approxi-

mation.

Plots of the magnetic field magnitude versus time were generated from evaluating

Equation 2.20, using the programs listed in Appendix A. These plots have 200 points

each. The time increment between points was adjusted so that the maximum magnetic

field magnitude occurred at the fortieth point of the plot. The increment could be so

adjusted by knowing that the maximum magnitude would occur at the end of the rise

time a. The variables of interest in the programs were the rise time a, the radiAl distance

s, and the axial distance z. Program runs were made for s = i.0m, 5.0m, and 10.0m; z

= 0.0m, 1.0m, and 5.0m; and a = 10.0ps, 20.Ops, and 30.Ops.

Three general trends were observed from these runs. As a i-icreases with s and z

fixed, the overall magnetic field magnitude decreases. This is due to the a-' relation in

Equation 2.20. As s increases with a and z fixed, the overall magnetic field magnitude

decrcascs. This is due to the s-1 relation in the arctangent function of Equation 2.20. And

finally, as z increases with a and s fixed, the overall magnetic field magnitude and shape

were unchanged except that the pulse was delayed in time more and more as z increased.

This is because z is merely a function of time, as seen in Equation 2.10. This time delay

behavior can be seen on the horizontal axes of Figure 6, Figure 7, and Figure 8.

To further investigate Bmax, plots of the maximum magnetic field magnitude versus

the rise times associated with each magnitude were generated. This was accomplished

by the programs listed in Appendix B. The magnetic field as a function of time was cal-

culated for 200 points by evaluating Equation 2.20, just as did the programs of Appendix

A. This was done for a fixed s and a fixed z (z was chosen to be zero for all following

calculations since it has no effect on the magnitude and simplifies the calculation proc-

ess). The initial rise time was selected to be 10.0ps. The magnetic field magnitudes were

run through a DO loop to identify the maximum. The maximum, along with the corre-

sponding ri;e time, was stored i.- an output data file. The rise time was then incremented

by 5.Ops and the entire procedure is repeated three hundred times. The output data file

13
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of 300 points is piotted by a DISSPLA program incorporated into Appendix B. An ex-
ample plot can be seen in Figure 9.

The theoretical approximation of Equation 2.28 predicts that the relationship be-

tv'en the maximum magnetic field magnitude Bm,. and the rise time a should be such
that B, oc a-'-'. The best way to examine this behavior is to apply a log-log scale to the

output data file used to create Figure 9. If the log-log graph produces a linear relation-

ship, the slope, of the graph will correspond to the exponent of a, The log-log plot

produces a liear relationship close to that expected of Equation 2.28 for low and me-
dium rise times, but the slope begins to decrease as the rise time reaches larger values.

This behavior can be seen in Figure 10 and an explanation follows.

The exact solution for the maximum magnetic field magnitude can be calculated by
evaluating Equation 2.20 where the limits z' (Equation 2.21) are for the time t2 (see

Figure 1). Since 12 t t, + a, z' becomes a function of a. With z arbitrarily chosen to be

zero, w/s becomes Kals where K is some constant.

The next step is to examine the arctangent function. For large values of Ka/s, the

arctangent in Equation 2.20 is approximately constant and large changes in a have little
effect on the arctangent value. Therefore the arctangent behaves as if there is no a de-

pendence and B should be proportional to a-' . But the slope of Figure 10 is tending

towards zero for high a :alues instead of towards -1, the exact opposite of what one

might think would happen.

There is one main reason why this behavior occurs., It goes back to the two cases
for the limits of integration of Equation 2.20. The maximum magnetic field amplitude

was calculated for the single integral case where the limits of integration were evaluated

at time t2 (see Figure 2). The magnetic field amplitude of the "tail" of the pulse was cal-

culated for the double integral case where the limits of integration were evaluated for

times t > t2 (see Figure 5).

Since these calculations are for the radiative fields, the magnitude of the magnetic
field does not decay to zero but instead eventually decays to some constant value. As the

rise time increases for a fixed observation point, the magnitude of the "tail" increases

relative to the maximum magnitude of the pulse. Another way to look at the process is

that large rise time pulses decay slowly compared to short rise time pulses. For extremely

large rise times, the maximum amplitude is virtually indistinguishable from the "tail".
Note that the maximum amplitude for a short rise time is larger than the maximum rise

time for a long rise time (from theory, 3ma o, a-s)., Therefore as the rise time increases,
the maximum magnetic field amplitude cannot continue to decrease linearly because the

17
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maximum amplitude is approaching a constant value as the rise time increases. This

behavior is shown in Figure 11 and Figure 12.

But as s increases, it decreases the value of Kals and the arctangent leaves the almost

constant value range and tends towards the linear response value region. As a result, the

relationship between Bmn, and a behaves linearly over a larger range of a as s increases.

This behavior can be seen in Figure 13.

The data file used in the plots of Figure 9 and Figure 10 was generated at a fixed s
value of 1.0m. To further investigate this behavior, additional data files needed to be

calculated and plotted for different values of s to see how much of an effect the radial

distance might have on the relationship between B, and a. The results are shown in

Table 1.

Table 1. B, VERSUS a SLOPE VALUES
s= 1,00m slope = -0.112

s = 5.00m slope = -0.207

s = 10.Om slope = -0.273
s = 15.Om slope = -0.358

s = 20,Om slope = -0.341

s = 25,0m. slope = -0.368

s = 30.0in slope = -0.409
s = 40.Om slope = -0.425

s = 50.Om slope = -0.452
s = 75.Om slope = -0.467

s = 100.Om slope = -0.475

The cancelling of the Bmax oc a-' effect at high a values by the magnitude of the

rr.-.gnetic pulse decay tail is shown in Figure 14. The effect of reducing the argument of

the arctangent function by increasing the radial distance s and thus returning the

arctangent function more to its linear response range is shown in Figure 15.

The relhtionship between the maximum magnetic fie"-' magnitude Bm. and the radial

distance s was graphed. The magnetic field was evaluated using Equation 2.20 and was

plotted as a function of time for 200 points at a constant s and constant a. The maxi-

mum magnetic pulse magnitude is determined and stored with its corresponding s value.

The value of s is incremented and the entire procedure repeated until a 300 point data
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file has been constructed. This data file is then plotted using DISSPLA. The programs

for these actions are located in Appendix C. An example plot can be seen in Figure 16.

The last step is to calculate and plot the three-dimensional relation between time,

the magnetic field, and radial distance. The magnetic field is calculated versus time for

50 points using Equation 2.20. The magnitude and corresponding time and radial posi-

tion are stored in output files. The radial distance is incremented and the entire proce-

dure is repeated 50 times. The result is three output files containing the coordinates for

a 50x50 array. A 3-D graphing routine reads these array points, converts them to a

surface, and plots the surface. The programs for this procedure are listed in Appendix

D.

Due to the fact that DISSPLA will only handle square arrays for surface plotting,

the number of points along the B - t axis had to be limited to 50 to hold computer

memory requirements within acceptable limits. This somewhat obscures the detail of the

3-D plot. Therefore a liited 2-D projection of B - t curves for a few s values was cre-

ated in Figure 17 to help understand the workings of Figure 18.

An example plot is displayed in Figure I8. If the graph projection of the B - s plane

is rotated about the t axis, a representation of the Cerenkov radiation cone in space is

produced.

Several values were used in U; prc,.'rams listed in the appendices., Electron energy

was set at 30 MeV. It must be approximately 25 McV or higher in order for Cerenkov

radiation to occur. Current was assumed to be 510 amperes. Any other desired values

can be used for these constants. Except for the purposes of Figure 7 and Figure 8, the

observer axial distance z was set to zero for simplification of calculations. The observer

radial distance s can never be set to zero except for initialization of incrementation use

in a DO loop. The function u, was set to zero also for simplification. It has the result

of causing the function u2 to simplify to the expression u2 = - va. where a is the rise time.

Finally, the magnetic field calculations were conducted in MKS units and converted to

CGS units from the relation: I Tesla - 10,000 Gauss.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The primary objective was to determine the effect of varying the rise time of the

electron beam charge density upon the Cerenkov pulse magnitude. The theoretical ap-

proximation of Equation 2.28 predicts that this behavior should be B,,, oc a-0- . Actual
results show that this behavior approaches the theoretical value at large radial distances

due to the decrease of the argument of the arctangent function.

This study was conducted for the case of a semi-infinite path lenght. Evaluating this

behavior for the finite case will have some effect on the expected outcome.

The magnetic field magnitude falls off as the radial distance increases. This was ex-
pected from the relationship in Equation 2.20. Since the magnetic field must also travel

farther as s increases, the pulse is time-delayed relative to a position closer to the

electron beam. By rotating the 3-D graph of Figure 10 about the time axis, an accurate
spatial description of the magnetic field pulse is obtained. This figure is the expected

Cerenkov radiation cone, somewhat analogous to the wake created by a boat moving

faster than the current speed of the water.

The shape and magnitude of the Cerenkov pulse is not affected in any manner by

changes in the observer's axial position. It is only affected by changes in the observer's

radial position. This assumes that all other possible variables (energy, rise time, current,
etc.) are held constant. The tail of such a pulse decays to some constant value which is

not zero. This effect is because the calculations are for the radiative fields. Calculations

should be conducted with the non-radiative fields as well.
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APPENDIX A. CERENKOV PULSE PROGRAM
PROGRAM PULSEI

C
C ***************************** **************
C * THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
C * WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
C * SHAPE OF THE CERENKOV PULSE IS GENERATED. THE VALUES OF THE *
C * PULSE MAGNITUDE POINTS FOR THE GIVEN PARAMETERS ARE STORED IN *
C * AN OUTPUT FILE FOR LATER USE IN A PLOTTING ROUTINE. *
C
C

REAL N, Ul, U2, BETA, CO, ROE, Al, A2, BPRME
REAL RISETM, D, DD, El, E2, ZII, ZIF, Z21, Z2F
REAL Bi, B2, Wi, W2, YY, XX, Ti, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TINC, IAMP, ENER, ENERJ
REAL S, Z, C, MO, V, NEG, TPRME, B
INTEGER I
DIMENSION TPRME(200), B(200)
DATA TPRME/200*0.0/, B/200*0.0/

C
OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='PULPLT DATA A')

C

C * N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT *
C * IN AMPS. ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE *
C * PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
C * METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
C * VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
C * MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
C * PER METER. *
C
C

N = 1.000293
IAMP = 510.0
ENER = 30.0
RISETM = 10. OE-12
S = 1.0
Z = 5.0

C
CO = 2.99792458E08
MO = 9.109534E-31
C = CO/N
ENERJ = ENER*l.6021892E-13
V = CO*SQRT( 1. 0-((M0**2.0)*(CO**4.0)/(ENERJ**2.0)))
IF (V. LE.C) GO TO 60
BETA = V/CO
ROE = IAMP/V
BPRME = N*BETA

C
C
C * SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
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C * CALCULATIONS. *
C
C

Ul = 0.0
U2 = "V*RISETM

C
C ********* *********** *********************
C * WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *
C * TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT. *
C *******************************************************
C

TINC = RISETM/40.0
SSQ = S**2.0
BPSQ = BPRME"*2.0
D = Z*BPSQ
DD 1 - BPSQ
NEG = SSQ*DD

C
C *************************************************************
C * ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. *
C
C

ZPMIN = Z - (S/(SQRT(BPSQ - 1.0)))
C

C * Ti AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO *
C * THE Ul AND U2 LEVELS RESPECTIVELY. *
C
C

TI = (ZPMIN - U1)/V + (SQRT(SSQ + (Z - ZPMIN)**2.0))/C
T2 = Ti + RISETM

C
DO 40 I = 1,200

IF (I.EQ.1) THEN
TPRME(I) = Ti
B(I) = 0.0

ELSE
TPRME(I) = Ti + (REAL(I)*TINC)

END IF
C
C
C * THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *
C * ION FROM ONE INTERVAL TO TWO INTERVALS.
C
C

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
El = (Z - Al)**2.0

C
C * **** ************************************** *** ***
C * THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE *
C * ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION. *

C

IF (El.LE.ABS(NEG)) THEN
B(I) = 0.0
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GO TO 30
ELSE

ZlI = CCA1-D) + SQRTCBPSQ*CE1+NEG)))/DD
ZiF =((Al-D) - SQRT(BPSQ*(El+NEG)))/DD

ENDIF
C

WPI = Z - ZiI
WPF = Z - ZIF
Wl = WPI/S
W2 = WPF/S
YY = ATAN(Wl)
XX = ATAN(W2)
BMI = -ROE*N*CBETA**2. O)*(YY-XX)*1. 0E04/U2
GO TO 20

C
10 CONTTNUE

Al =,U1 + V*TPRHE(I)
A2 = U2 + V*TPRME(I)
El =(Z - A1)**2.0
E2 = (Z - A2)**2.0
IF (E1.LE.ABS(NEG)) THEN

B(I) =0.0
GO TO 30

ELSE
ZlI = ((Ai-D) + SQRT(BPSQ*(E1+NEG)))/DD
ZiF = ((Al-D) - SQRT(BPSQ*(E1+NEG)))/DD

ENDI F
C

IF (E2. LE. ABS(NEG)) THEN
B(I) =0.0
GO TO 30

ELSE
Z21 = ((A2-D) 4 SQRT(BPSQ*(E2+NEG)))/DD
Z2F = ((A2-D) - SQRT(BPSQ*-(E2+NEG)))/DD

EINDIF
C

WPI = Z -ZlI
WPF = Z -Z21
Wi = WPI/S
W2 = WPF/S
YY = ATAN( Wi)
XX = ATAN(W2)
Bi = -ROE*N*(BETA**2.0)*(YY -XX)*1.0E04/U2

C
WPI = Z - Z2F
WPF = Z - ZiP
Wi = WPI/S
W2 = WFF/S
YY = ATAN( Wi)
XX =ATAN(W2)
B2 = -ROE*N*,(BETA**2.0)*(YY - XX)*i.0E04/U2
B(I) = Bi B2

20 CONTINUE
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30 CONTINUE
C

40 CONTINUE
C

DO 50 1 = 1,200
WRITE(7,1000) TPRIIE(I),B(I)

1000 FORMAT(G15. 7,G15. 7)
50 CONTINUE

C
GO TO 70

60 WRITE(4,1010)
1010 FORI4AT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI

$ON FOR THIS ELECTRON' ,4X,' ENERGY')
70 CONTINUE

C
STOP
END

C
C
C

PROGRAM PULPLT
C

REAL X(300),Y(300),XMIN,XMAX,YMIN,YMAX
INTEGER N
CHARACTER*20 TITLE$

C
TITLE$ = 'B-FIELD VS TIME$'
N = 200

C
READ(7,8000) ((X(I),Y(I)),I=1,N)

8000 FORMAT(2G15. 7)
C
C CALL TEK618 Itt3CALL SHERPA('P6

CALL PAGE(6,7.5)
CALL AREA2D(4.5,5.5)
CALL XNAME( TIME (SECONDS)$' ,100)
CALTL YNAME( 'CERENKOV PULSE (GAUSS)$' ,100)
CALL HEADIN(TITLE$,1O0, 1. 5,1)
CALL CROSS
CALL RANGE(X,XMIN,XMAX,N)
CALL RANGE1(Y,YMIN,YMAX,N)
CALL GRAF(XMIN,'SCALE' ,XMAX,YMIN,'SCALE',YMAX)
CALL CURVE(X,Y,200,0)
CALL ENDPL(0)
CALL DONEPL

C
RETURN
END

C
C
C

C
DIMENSION Y(N)
YMIN=1. E20

34



YMAX=-l.E20
DO 10 I=1,N

IF(Y(I).GT.YMAX) YMAX= Y(I)
IF(Y(I).LT.YMIN) YMIN= Y(I)

10 CONTINUE
C

RETURN
END

C
C
C

SUBROUTINE RANGE1CY,YMIN,YMAX,N)
C

DIMENSION Y(N)
YMIN=1. E20
YMAX=-1. E20
DO 20 I=1,N

IF(Y(I).GT.YMAX) YMAX= Y(I)
IF(Y(I).LT.YMIN) YMIN= Y(I)

20 CONTINUE
C

RETURN
E ND
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APPENDIX B. B MAX - RISE TIME PROGRAM
PROGRAM CERENKV

C
C ********************** *
C * THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
C * WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
C * SHAPE OF THE CERENKOV PULSE IS GENERATED. THE MAXIMUM VALUE OF *
C * THE PULSE MAGNITUDE IS DETERMINED AND STORED WITH ITS CORRES- *
C * PONDIND RISE TIME VALUE. THE RISE TIME IS INCREMENTED AND THE *
C * ENTIRE PROCESS IS REPEATED. THESE VALUES ARE THEN READ TO AN *
C * OUTPUT FILE FOR USE IN A PLOTTING ROUTINE.
C
C

REAL N, Ul, U2, BETA, CO, ROE, Al, A2, BPRME, YMAX
REAL RISETM, D, DD, El, E2, ZlI, ZlF, Z21, Z2F
REAL Bi, B2, Wl, W2, YY, XX, Ti, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TINC, IAMP, ENER, ENERJ
REAL S, Z, C, MO, V, NEG, TPRME, B, DRISE, BMAX
INTEGER I, J
DIMENSION TPRME(200), B(200), DRISE(300), BMAX(300)
DATA TPRME/200*O.0/, B/200*0.0/, DRISE/300*0.0/, BMAX/300*0.0/

C
OPEN (UNIT=-7,FILE='PULPLT DATA A')
OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='CPLOTl DATA A')

C
C ******************************************************e*******

C * N IS THE INDEX OF REFRACTION. 1AMP IS THE ACCELERATOR CURRENT *
C * IN AMPS. ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE *
C * PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
C * METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
C * VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
C * MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
C * PER METER. *
C
C

N = 1. 000293
IAMP = 510.0
ENER = 30.0
RISETM = 9.9E-12
S = 10.0
Z= 0.0

C
CO = 2.99792458E08
MO = 9. 109534E-31
C = CO/N
ENERJ = ENER*1.6021892E-13
V = CO*SQRT( 1. 0-((MO**2.0)*(CO**4.0)/(ENERJ**2.0)))
IF (V.LE.C) GO TO 80
BETA = V/CO
ROE = IAMP/V
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BPRME = N*BETA
C

C * SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
C * CALCULATIONS. *C ***********************WWWWWW***************W*WWWWW WWWWW***
C

Ul = 0.0
C

C * WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *
C * TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT. *C ********'*W**********************www**** *~wwww**w**ww**w****
C

SSQ = S**2.0
BPSQ = BPRME**2.0
D = Z*BPSQ
DD 1 - BPSQ
NEG = SSQ*DD

C

C * ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. *
C
C

ZPMIN = Z - (S/(SQRT(BPSQ - 1.0)))
C
C
C * TI AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO *
C * THE UI AND U2 LEVELS RESPECTIVELY. SINCE T2 AND U2 ARE FUNCT- *
C * IONS OF RISETM, THEY ARE INSIDE THE DO LOOP. *
C
C

Ti = (ZPMIN - U1)/V + (SQRT(SSQ + (Z - ZPMIN)**2.0))/C
C

DO 60 J = 1,300
RISETM = RISETM + 1.OE-13
TINC = RISETM/40.0
DRISE(J) = RISETM
U2 = -V*RISETM
T2 = Ti + RISETM

C
DO 40 I = 1,200

IF (I.EQ.I) THEN
TPRME(I) = Ti
B(I) = 0.0

ELSE
TPRME(I) = Ti + (REAL(I)*TINC)

END IF
C
C
C * THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *
C * ION FROM ONE INTERVAL TO TWO INTERVALS. *
C

IF (TPRME(I).GT.T2) GO TO 10
At = Ul + V*TPRME(I)
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El = (Z - Al)**2.O
C
C **********************************

C * THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE*
C * ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION.*
C ***************************** * * ***

IF (El. LE. ABS(NEG)) THEN
B(I) =0.0
GO TO 30

ELSE
ZiI = ((A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
ZiF = ((Al-D) - SQRT(BPSQ*(El+NEG)))/DD

END IF
C

WPI = Z -ZiI

WPF =Z -ZiF

Wi = WPI/S
W2 = WPF/S
YY = ATAN(Wl)
XX = ATAN(W2)
B( I) = -ROE*N*(BETA*,*2. 0)*(YY-XX)*l. 0E04/U2
GO TO 20

C
10 CONTINUE

Al = Ul + V*TPRME(I)
A2 = U2 +- V*TPRME(I)
El = (Z - AI)**2.0
E2 =(Z - A2)**2.0
IF (E1.LE.ABS(NEG)) THEN

B(I) = 0.0
GO TO 30

ELSE
ZlI = ((A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
ZiF = ((A1-D) - SQRT(BPSQ*(El+NEG)))/DD

END IF
C

IF (E2.LE.ABS(NEG)) rHEN
B(I) =0.0

GO TO 30
ELSE

Z21 = ((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
Z2F = ((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD

ENDIF
C

WPI = Z -ZI

WPF = Z -Z21

wi = WPI/S
W2 = WPF/S
YY = ATAN( Wi)
XX =ATAN(W2)
Bi = -ROE*N*(BETA**e2.0)*(YY - XX)*1.0E04/U2

C
WPI = Z - Z2F
WPF = Z - ZIF
Wi = WPI/S
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W2 = WPF/S
YY = ATAN( WI)
XX =ATAN(W2)
B2 = -ROE*N*(BETA**2.O)*(YY X)Q*1.0E04/U2
B(I) =Bi + B2

C
20 CONTINUE

C
30 CONTINUE

C
40 CONTINUE

C
YMAX = -1. 0E20

C
C **********************************

C *THIS LOOP DETERMINES THE MAXIMUM VALUE OF THE CERENKOV PULSE. *
C *********************************

C
DO 50 I = 1,200

IF (B(I).GT.YMAX) YMAX = B(I)
50 CONTINUE

C
BMAX(J) =YMAX

60 CONTINUE
C

DO 70 I = 1,300
WRITE( 7,1000) DRISEC I) ,BMAX( I)

1000 FORMAT(G15. 7, G15. 7)
70 CONTINUE

C
GO TO 90

80 WRITE(4,101O)
1010 FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI

$ON FOR THIS ELECTRON' ,4X,' ENERGY')
90 CONTINUE

C
STOP
END

C
C
C

PROGRAM CPLOT1
C PROGRAM LOGPLT
C

REAL X(300),Y(300),XMIN,XMAX,YMIN,YMAX
C DOUBLE PRECISION X(300),Y(300),XMIN,XMAX,YMIN,YMAX

INTEGER N
CHARACTER*20 TITLE$

C
TITLE$ = 'B MAX VS RISETIME$'
N = 300

* C
READ(7,8000) ((X(I),Y(I)),I=1,N)

8000 FORMAT(2G15. 7)
C
C CALL TEK618
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CALL SHERPAC'P7 B3
C CALL SHERPA('P8B13

CALL PAGE(6,7.5)
CALL AREA2D(4.5,5.5)
CALL XNAME('RISE TIME (SECONDS)$',100)
CALL YNAME( CERENKOV PULSE (GAUSsi$' ,100)
CALL HEADIN(TITLE$,100,1. 5,1)
CALL CROSS
CALL RANGE(X,XMIN,XMAX,N)
CALL RANGE1(Y,YMIN,YMAX,N)
CALL GRAF(XMIN,'SCALE' ,XMAX,YMIN,'SCALE' IYhAX)

C CALL LOGLOG(XMIN,4.5,YMIN,5.5)
CALL CURVE(X,Y,300,0)
CALL ENDPL(0)
CALL DONEPL,

C
RETURN
END

C
C
C

SUBROUTINE RANGE(Y,YMIN,YMAX,N)
C

DIMENSION Y(N)
YM'-IN=1. E20
YMAX=-1. E20
DO 10 I1,N

IF(Y(I).GT.YMAX) YMAX= Y(I)
IP(Y(I).LT.YMIN) YMIN= Y(I)

10 CONTINUE
C

RETURN
END

C
C
C

SUBROUTINE RANGE1(Y,YMIN,YMAX,N)
C

DIMENSION Y(N)
YMIN=1. E20
YMAX=-1.E20
DO 20 I11, N

IF(Y(I).GT.YMAX) YMAX= Y(I)
IF(Y(I).LT.YMIN) YMIN= Y(I)

20 CONTINUE
C

RETURN
END
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APPENDIX C. B MAX - S PROGRAM

PROGRAM BVS
C
C **************************************************** ***
C * THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
C * WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
C * SHAPE OF THE CERENKOV PULSE IS GENERATED. THE MAXIMUM OF THE *
C * PULSE MAGNITUDE IS DETERMINED AND STORED WITH ITS CORRESPONDING *
C * S VALUE. THE S VALUE IS THEN INCREMENTED AND THE ENTIRE PROCESS *
C * IS REPEATED. THESE VALUES ARE READ TO AN OUTPUT FILE FOR LATER *
C * USE IN A PLOTTING ROUTINE. *
C ************************************************************
C

REAL N, Ul, U2, BETA, CO, ROE, Al, A2, BPRME, YMAX
REAL RISETM, D, DD, El, E2, ZII, ZlF, Z21, Z2F
REAL BI, B2, Wl, W2, YY, XX, TI, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TINC, IAMP, ENER, ENERJ
REAL S, Z, C, MO, V, NEG, TPRME, B, DS, BMAX
INTEGER I, J
DIMENSION TPRME(200), B(200), DS(300), BMAX(300)
DATA TPRME/200*O.0/, B/200*0.0/, DS/300*0.0/, BMAX/300*O.O/

C
OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT-7,FILE= 'BVSPLT DATA A')

C
C * N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT ,
C * IN AMPS., ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE *
C * PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
C * METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
C * VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
C * MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
C * PER METER. *
C
C

N = 1.000293
IAMP = 510.0
ENER = 30.0
RISETM = 10. OE-12
S = 0.0
Z = 0.0

C
CO = 2. 99792458E08
MO = 9. 109534E-31
C = CO/N
ENERJ = ENER*1.6021892E-13
V = CO*SQRT(i. 0-((MO**2.0)*(CO**4.0)/(ENERJ**2.0)))
IF (V.LE.C) GO TO 80
BETA = V/CO
ROE = IAMP/V
BPRME = N*BETA

C
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C * SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
C * CALCULATIONS. *
C
C

Ul = 0.0
U2 = "V*RISETM

C
C ************************************ ** *
C * WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *
C * TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT. *
C
C

TINC = RISETM/40.0
BPSQ = BPRME**2.0
D Z*BPSQ
DD = 1 - BPSQ

C
DO 60 J = 1,300

S = S + 0.01
DS(J) = S
SSQ = S**2.0
NEG = SSQ*DD

C

C * ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. *
C
C

ZPMIN = Z - (S/(SQRT(BPSQ - 1.0)))
C
C ********************************WW*WW*WW*** W** W***W***W* *

C * Ti AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO *
C * THE Ul AND U2 LEVELS RESPECTIVELY. *
C
C

Ti = (ZPMIN - UI)/V + (SQRT(SSQ + (Z - ZPMIN)**2.0))/C
T2 = Ti + RISETM

C
DO 40 I = 1,200

IF (I.EQ.i) THEN
TPRME(I) = TI
B(I) = 0.0

ELSE
TPRME(I) = Ti + (REAL(I)*TINC)

END IF
C
C *********e**w*ww **ww*ww*w*wwwww**,w**ww*w****** * *
C * THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *
C * ION FROM ONE INTERVAL TO TWO INTERVALS. *
C
C

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + VTPRME(I)
El = (Z - Al)**2.0

C
C
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C * THIS IF STATEMENT HANDLES THE CASE OF RAVING A NEGATIVE SQUARE*
C * ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION.*
C ******************************. .**

C
IF (El. LE. ABS(NEG)) THEN

B(I) =0.0
GO TO 30

ELSE
ZII = ((A1-D) + SQRT(BPSQ*CEl+NEG)))/DD
ZiF = (CAl-D) - SQRT(BPSQ*(El+NEG)))/DD

END IF
C

WPI =Z -ZiI

WPF = Z -ZiP

Wi = WPI/S
W2 = WPF/S
YY = ATAN( Wi)
XX = ATAN(W2)
B(I) = -ROE*N*CBETA**2. 0)*(YY-XX)*l. 0E04/U2
GO TO 20

C
10 CONTINUE

Al = Ul + V*TPRME(I)
A2 = U2 + V*TPRME(I)
El = (Z - Al)**2.0
E2 = (Z - A2)**2.0
IF (El.LE.ABS(NEG)) THEN

B(I) = 0.0
GO TO 30

ELSE
ZII ((Al-D) + SQRT(BPSQ*(El+NEG)))/DD
ZlF = ((Al-D) - SQRT(BPSQ*(E1+NEG)))/DD

ENDIF
C

IF (E2. LE. ABS(NEG)) THEN
B(I) =0.0
GO TO 30

ELSE
Z21 = ((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
Z2F = ((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD

END IF
C

WPI = Z -ZiI

WPF =Z -Z21

wl = WPI/S
W2 = WPF/S
YY = ATAN(Wl)
XX = ATAN(W2)
B= -ROE*N*(BETA**2.0)*(YY -XX)*1.0E04/U2

C
WPI = Z - Z2F
WPF =Z -ZlF
Wi = WPI/S
W2 = WPF/S
YY = ATAN( Wi)
XX = ATAN(W2)
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B2 = ROE*N*CBETA**2.0)*C(YY - XJXQ*1.0E04/U2
B(I) =31 + B2

C
20 CONTINUE

C
30 CONTINUE

C
40 CONTINUE

C
YMAX = -1. 0E20
DO 50 I = 1,200

IF (B(I).GT.YMAX) YMAX B (I)
50 CONTINUE

BMAX(J) = YMAX
60 CONTINUE

C
DO 70 I = 1,300

WRITE(7,1000) DS(I),BMAX(I)
1000 FORMAT(G15. 7,G15. 7)

70 CONTINUE
C

GO TO 90
80 WRITE(4,1O1O)

1010 FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI
$ON FOR THIS ELECTRON' ,4X,' ENERGY')

90 CONTINUE
C

STOP
END

C
C
C

PROGRAM BVSPLT
C

REAL X(300),Y(300),XMIN,XMAX,YMIN,YMAX
C DOUBLE PRECISION X(300),Y(300),XMIN,XMAX,YMIN,YMAX

INTEGER N
CHARACTER-125 TITLE$~

C
TITLE$ = 'B MAX VS RADIAL DISTANCE$'
N = 300

C
READ(7,8000) ((X(I),Y(I)),I=1,N)

8000 FORIIAT(2G15. 7)
C
C CALL TEK618 II13CALL SHERPA('P9

CALL PAGL"(6,17.5)
CALL AREA2D(4.5,5.5)
CALL XNAMEC RADIAL DISTANCE (METERS)$' ,100)
CALL YNAME( CERENKOV PULSE (GAUSS) $',100)
CALL IEADIN(TITLE$,100,1. 5,1)
CALL CROSS
CALL RANGE(X,XMIN,XMAX,N)
CALL RANGE1(Y,YMIN,YMAX,N)
CALL GRAF(XMIN, tSCALE' ,XMX,YMIN, 'SCALE' ,YMAX)
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CALL CURVE(X,Y,300,O)
CALL ENDPL(0)
CALL DONEPL,

C
RETURN
END

C
C

SUBROUTINE RANGE(Y,YMIN,YHAX,N)
C

DIMENSION Y(N)
YMIN=1. E20
YMAX=-l. E20
DO 10 1=1,N

IFCY(I).GT.YMAX) YMAX= Y(I)
IF(Y(I).LT.YMIN) YMIN= Y(I)

10 CONTINUE
C

RETURN
END

C
C
C

SUBROUTINE RANGE1CY,YMIN,YMAX,N)
C

DIMENSION Y(N)
YMIN=1. E20
YMAX=-1.E20
DO 20 I=1,N

IF(Y(I).GT.YMAX) YMAX= Y(I)
IF(Y(I).LT.YMIN) YMIN= Y(I)

20 CONTINUE
C

RETURN
END
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APPENDIX D. S - T - B PROGRAM

PROGRAM STB
C
C ************************ ****************** **
C * THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
C * WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
C * SHAPE OF THE CERENKOV PULSE IS GENERATED. THE S VALUE IS INCRE- *
C * MENTED AND THE PROCESS IS REPEATED. THESE VALUES ARE STORED FOR *
C * LATER USE IN A 3-D PLOTTING ROUTINE. *
C
C

REAL N, Ul, U2, BETA, CO, ROE, Al, A2, BPRME
REAL RISETM, D, DD, El, E2, ZlI, ZlF, Z21, Z2F
REAL Bl, B2, Wl, W2, YY, XX, Ti, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TING, IAMP, ENER, ENERJ
REAL S, Z, C, MO, V, NEG, TPRME, B
REAL BF, SRD, TIME
INTEGER I, J, K, L, M
DIMENSION TPRME(200), B(200)
DIMENSION BF(2500), SRD(2500), TIME(2500)
DATA TPRME/200*0.O/, B/200*0.0/, M/2500/
DATA BF/2500*O.0/, SRD/2500*0. 0/, TIME/2500*0.0/

C
OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=-7,FILE='S DATA B')
OPEN (UNIT=8,FILE='T DATA B')
OPEN (UNIT=9,FILE='B DATA B')

C

C * N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT *
C * IN AMPS. ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE *
C * PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
C * METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
C * VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
C * MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
C * PER METER.
C
C

N = 1.000293
IAMP = 510.0
ENER = 30.0
RISETM = 10. OE-12
S = 0.0
Z = 0.0

C
CO = 2.99792458E08
MO = 9.109534E-31
C = CO/N
ENERJ = ENER*l.6021892E-13
V = CO*SQRT(I.O-((MO**2.0)*(CO**4.0)/(ENERJ**2.0)))
IF (V.LE.C) GO TO 90
BETA = V/CO
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ROE = IAMP/V
BPRME = N*BETA

C
C ************************************************************
C * SETTING Ui ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY
C * CALCULATIONS. *
C ******************* ***************************************

C
Ut = 0.0
U2 = -V*RISETM

C
C *********************************************************
C * WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *
C * TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT. *
C
C

TINC = ! ISETM/10.0
BPSQ = BPRME**2.0
D = Z*BPSQ
DD = 1 - BPSQ

C
DO 50 K 1,50

IF (K. EQ. 1) THEN
J=0

ELSE
J 50*(K-I)

END IF
S = S + 0.5
SSQ = S**2.0
NEG = SSQ*DD

C
C
C * ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. *
C

ZPMIN = Z - (S/(SQRT(BPSQ - 1.0)))
C
C
C * Ti AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO *
C * THE Ui AND U2 LEVELS RESPECTIVELY.
C
C

TI = (ZPMIN - Ui)/V + (SQRT(SSQ + (Z - ZPMIN)**2.0))/C
T2 = Ti + RISETM

C
DO 40 I = 1,50

IF (I.EQ.i) THEN
TPRME(I) = TI
B(I) = 0.0

ELSE
TPRME(I) = Ti + (REAL(I)*TINC)

END IF
L=J+ I
SRD(L) S
TIME(L) = TPRME(I)

C
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C * THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *
C * ION FROM ONE INTERVAL TO TWO INTERVALS. *
C
C

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
El = (Z - Al)**2.0

C
C ***********************************************
C * THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE *
C * ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION. *
C
C

IF (E1. LE. ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

ELSE
ZlI = ((Al-D) + SQRT(BPSQ*(E1+NEG)))/DD
ZIF = ((Al-D) - SQRT(BPSQ*(EI+NEG)))/DD

ENDIF
C

WPI = Z- ZlI
WPF = Z - ZlF
Wl = WPI/S
W2 = WPF/S
YY = ATAN(W1)
XX = ATAN(W2)
B(I) = -ROE*N*(BETA**2.0)*(YY-XX)*l. 0E04/U2
GO TO 20

C
10 CONTINUE

Al = Ul + V*TPRME(I)
A2 = U2 + V*TPRME(I)
El = (Z - Al)**2.0
E2 = (Z - A2)**2.0
IF (El.LE.ABS(NEG)) THEN

B(I) = 0.0
GO TO 30

ELSE
ZlI = ((Al-D) + SQRT(BPSQ*(E1+NEG)))/DD
ZIF = ((Al-D) - SQRT(BPSQ*(E1+NEG)))/DD

ENDIF
C

IF (E2.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

ELSE
Z21 = ((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
Z2F = ((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD

ENDIF
C

WPI = Z - ZlI
WPF = Z - Z21
Wi = WPI/S
W2 = WPF/S
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YY =ATAN( Wl)
XX =ATANCW2)
Bi = ROE*N*CBETA**2.0)*CYY - )QX)*l.OEO4/U2

C
WPI = Z - Z2F
WPF = Z - ZIF
Wl = WPI/S
W2 =WPF/S
YY =ATAN( Wi)
XX =ATAN(W2)
B2 = ROE*N*(BETA**2.O)*(YY - yJ)*l.0E04/U2
B(I) = Bi + B2

C
20 CONTINUE

C
30 CONTINUE

C
BF(L) = B(I)

40 CON'TINUE
C

50 CONTINUE
C

DO 60 I = 1,M
WRITE(7,1000) SRD(I)

1000 FORMAT(G15. 7)
60 CONTINUE

DO 70 1= 1,M1
WRITE(8,iOOO) TIME(I)

70 CONTINUE
C

DO 80 1= 1,M
WRITE(9,1000) BF(I)

80 CONTINUE
C

GO TO 100
90 WRITE(4,1O10)

1010 FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI
$ON FOR THIS ELECTRON',4X,,' ENERGY')

100 CONTINUE
C

STOP
END

C
C
C

PROGRAM THREED
C

REAL S(2500),T(2500),B(2500),X3MAX,Y3MAX,Z3MAX,ZMAT(2500)
INTEGER I,N
CHARACTER*35 TITLE$

C
TITLE$ = 'B-FIELD VS TIME VS RADIAL DISTANCE$'
N = 2500

£ C
READ(7,8000) (S(I),I=1,N)
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8000 FORMAT(G15. 7)
READ(8,8000) (T(I),I=1,N)
READ(9,8000) (B(I),1=1,N)

C
CALL RANGE(S,X3MAX,N)
CALL RANGE(T,Y3MAX,N)
CALL RANGE(B,Z3MAX,N)

C
C CALL TEK618

CALL SHERPA('P10 %B,3
CALL PAGE( 7. 5, 9. 0)
CALL AREA2D)(5. 5,7. 0)
CALL VOLM3D(1,1,1)
CALL X3NAIIE('DISTANCE (METERS)$',100)
CALL Y3NAME('TIME (SECONDS)$t ,100)
CALL Z3NAME('MAGNITUDE (GAUSS)$',100)
CALL HEADIN(TITLE$,100,1. 0,1)
CALL VUABSC1.0 -0. 5,0.5)
CALL GRAF3D(0.0,'SCALE',X3MAX,0.0,'SCALE',Y3MAX,0.0,'SCALE',Z3MAX)
CALL BGNIIAT(50,50)
CALL GETMAT(S,T,B,2500,0)
CALL ENDMAT(ZMAT,0)
CALL SURMAT(ZMAT,1,50,5,50,0)
CJALI, ENDPL(0)
"*ALL DONEPL

C
STOP
END

C
C
C

SUBROUTINE RANGE(Y,YMAX,N)
C

DIMENSION Y(N)
YMAX = -1. 0E20
DO 20 I = 1,N

IF (Y(I).GT.YMAX) YMAX Y(I)
20 CONTINUE

C
RETURN
END
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